多層軟包裝的終端回收挑戰與解方
包裝未來
2025-11-17

多層軟包裝的終端回收挑戰與解方

薄型多層複合包材在全球供應鏈中依然是工程設計的成功案例,同時也是永續上的挑戰。多數零食、咖啡與寵物食品的包裝並非單一材質,而是由多層薄膜組成——例如提供封口與韌性的聚烯烴、負責阻隔的 EVOH 或金屬化層,以及提供視覺效果與結構的油墨與黏著劑。 這些複合結構帶來卓越阻隔性與輕量特性,卻使回收變得困難。 多層軟包裝的「終端命運」位在性能、回收基礎設施與經濟的交會點:如何在保留阻隔性與加工性之下,建立可信、可行的回收路徑。 對包裝產業而言,實務方向聚焦三點: 結構簡化、相容或可拆解設計,以及為回收料建立穩定應用市場 。   多層軟包裝難以回收的三大原因 1. 收集與分選困難 大多數路邊回收系統仍以回收硬質塑膠、金屬與紙類為主。軟膜容易纏繞設備、被風流帶走,最後多被歸入殘餘廢棄物。 即使有軟膜收集,分選機較容易辨識透明 PE;但 PE 與 PP、PA、PET、EVOH 或鋁複合的多層膜在 NIR(近紅外線)設備中會顯示成混合材質,使打包價值降低。大量油墨或含碳黑的顏料更會干擾讀取。 2. 再生料品質不穩 機械回收偏好單一材質。多層包材的異質層會造成污染,產生顆粒、氣味或脆化問題。 金屬化層會在熔融時剝落;強力黏著劑與油墨不易洗掉,形成雜質。 要製作可用於薄膜的 PCR(再生料),必須有乾淨一致的來源與已知添加物,而多層膜若不重新設計,很難達到這要求。 3. 市場需求決定最終去向 即使收集到,端市場仍會影響去留。 較乾淨的透明 PE 可重新變成垃圾袋或簡易薄膜;混合多層膜通常只能降階利用,做成低規格產品,甚至在需求疲弱時改作能源回收。 要建立能長期吸收再生料的市場,必須平衡品質、顏色容忍度與應用規格。   如何讓多層軟包裝更可回收? 1. 儘可能使用單一材質(Mono-material) PE 或 PP 為主的複合結構是目前最可回收的方向。 常見案例: PE//EVOH//PE 結構 全 PP 複合 (鑄造 PP 做封口、OPP 做挺性) 以透明阻隔塗層取代 PET 或 PA 盡量讓主要材質佔 90–95% 以上 。 2. 讓多層結構可「拆解」 如果無法避免第二材質,讓其在清洗或熱處理中分離: 使用可在鹼洗中溶解的黏著系 使用可逆型熱黏著層,使清洗時層間分離 使用可漂浮、可脫墨油墨或可移除標籤膠 3. 讓分選機「看得見」主材質 避免碳黑,改用可被 NIR 辨識的顏料 保留透明區域,減少大面積印刷 在可相容薄膜背面反印,以利脫墨 4. 選擇更相容的黏著與阻隔技術 EVOH 在低比例下(如 <5%)仍可維持阻隔,且相容性較佳 可考慮塗佈型、分散型或 plasma coating 作為替代 金屬化層盡量超薄化,或改採透明阻隔 5. 以實測數據支撐「可回收」主張 必須做 NIR 測試、洗滌測試、熔融流動、異味、造粒顏色 與回收業者合作評估實際可行性   標準機械回收之外的替代回收策略 1. 溶劑法(Dissolution) 選擇性溶解目標聚合物(多為 PE、PP),過濾掉油墨、黏著與阻隔層,再沉澱出更乾淨的樹脂。 成品質比混合料更穩定,能重新用於薄膜或成型件。 2. 化學回收(熱裂解、解聚) 將塑膠轉為油品或單體,可在食品接觸領域透過「質量平衡」回到製程。 適用於機械回收不經濟的複雜膜材,但能耗與收率需納入考量。 3. 封閉式循環再利用(Reusable loops) 在 B2B(企業對企業)供應鏈中,耐用的軟袋可重複清洗使用,減少一次性包材消耗。   透過採購、治理與清晰標示避免漂綠 設定明確 KPI:回收料比例、可回收結構 SKU 比例、分選通過率、洗滌產率、熔融指數穩定度、氣味等級 報告實際回收流向(路邊回收、商店回收、回收廠、化學回收、能源回收) 遵循最嚴格市場的 EPR 規範與回收標示 使用低遷移油墨、黏著,並管理 NIAS(非預期物質) 與回收端共享材料清單、油墨系統、阻隔層資訊 在包裝上清晰標示回收方式(如「PE 薄膜|請至店內回收」)   結語 多層軟包裝的永續改善關鍵在於設計要符合實際回收環境,而非理想狀態。 推動單一材質結構、選擇可相容或可拆解的阻隔與黏著系統、以實測數據驗證,再為無法機械回收的部分建立可信的替代路線,才能讓軟包裝在保有性能的同時,也能真正回到可循環體系。   內容來源: https://www.packaging-gateway.com/
『設計印象雜誌』
橫跨印刷及設計領域的專業媒體,兩個月發行一期紙本雜誌,網站不定期更新
多層軟包裝的終端回收挑戰與解方
包裝未來
2025-11-17

多層軟包裝的終端回收挑戰與解方

薄型多層複合包材在全球供應鏈中依然是工程設計的成功案例,同時也是永續上的挑戰。多數零食、咖啡與寵物食品的包裝並非單一材質,而是由多層薄膜組成——例如提供封口與韌性的聚烯烴、負責阻隔的 EVOH 或金屬化層,以及提供視覺效果與結構的油墨與黏著劑。 這些複合結構帶來卓越阻隔性與輕量特性,卻使回收變得困難。 多層軟包裝的「終端命運」位在性能、回收基礎設施與經濟的交會點:如何在保留阻隔性與加工性之下,建立可信、可行的回收路徑。 對包裝產業而言,實務方向聚焦三點: 結構簡化、相容或可拆解設計,以及為回收料建立穩定應用市場 。   多層軟包裝難以回收的三大原因 1. 收集與分選困難 大多數路邊回收系統仍以回收硬質塑膠、金屬與紙類為主。軟膜容易纏繞設備、被風流帶走,最後多被歸入殘餘廢棄物。 即使有軟膜收集,分選機較容易辨識透明 PE;但 PE 與 PP、PA、PET、EVOH 或鋁複合的多層膜在 NIR(近紅外線)設備中會顯示成混合材質,使打包價值降低。大量油墨或含碳黑的顏料更會干擾讀取。 2. 再生料品質不穩 機械回收偏好單一材質。多層包材的異質層會造成污染,產生顆粒、氣味或脆化問題。 金屬化層會在熔融時剝落;強力黏著劑與油墨不易洗掉,形成雜質。 要製作可用於薄膜的 PCR(再生料),必須有乾淨一致的來源與已知添加物,而多層膜若不重新設計,很難達到這要求。 3. 市場需求決定最終去向 即使收集到,端市場仍會影響去留。 較乾淨的透明 PE 可重新變成垃圾袋或簡易薄膜;混合多層膜通常只能降階利用,做成低規格產品,甚至在需求疲弱時改作能源回收。 要建立能長期吸收再生料的市場,必須平衡品質、顏色容忍度與應用規格。   如何讓多層軟包裝更可回收? 1. 儘可能使用單一材質(Mono-material) PE 或 PP 為主的複合結構是目前最可回收的方向。 常見案例: PE//EVOH//PE 結構 全 PP 複合 (鑄造 PP 做封口、OPP 做挺性) 以透明阻隔塗層取代 PET 或 PA 盡量讓主要材質佔 90–95% 以上 。 2. 讓多層結構可「拆解」 如果無法避免第二材質,讓其在清洗或熱處理中分離: 使用可在鹼洗中溶解的黏著系 使用可逆型熱黏著層,使清洗時層間分離 使用可漂浮、可脫墨油墨或可移除標籤膠 3. 讓分選機「看得見」主材質 避免碳黑,改用可被 NIR 辨識的顏料 保留透明區域,減少大面積印刷 在可相容薄膜背面反印,以利脫墨 4. 選擇更相容的黏著與阻隔技術 EVOH 在低比例下(如 <5%)仍可維持阻隔,且相容性較佳 可考慮塗佈型、分散型或 plasma coating 作為替代 金屬化層盡量超薄化,或改採透明阻隔 5. 以實測數據支撐「可回收」主張 必須做 NIR 測試、洗滌測試、熔融流動、異味、造粒顏色 與回收業者合作評估實際可行性   標準機械回收之外的替代回收策略 1. 溶劑法(Dissolution) 選擇性溶解目標聚合物(多為 PE、PP),過濾掉油墨、黏著與阻隔層,再沉澱出更乾淨的樹脂。 成品質比混合料更穩定,能重新用於薄膜或成型件。 2. 化學回收(熱裂解、解聚) 將塑膠轉為油品或單體,可在食品接觸領域透過「質量平衡」回到製程。 適用於機械回收不經濟的複雜膜材,但能耗與收率需納入考量。 3. 封閉式循環再利用(Reusable loops) 在 B2B(企業對企業)供應鏈中,耐用的軟袋可重複清洗使用,減少一次性包材消耗。   透過採購、治理與清晰標示避免漂綠 設定明確 KPI:回收料比例、可回收結構 SKU 比例、分選通過率、洗滌產率、熔融指數穩定度、氣味等級 報告實際回收流向(路邊回收、商店回收、回收廠、化學回收、能源回收) 遵循最嚴格市場的 EPR 規範與回收標示 使用低遷移油墨、黏著,並管理 NIAS(非預期物質) 與回收端共享材料清單、油墨系統、阻隔層資訊 在包裝上清晰標示回收方式(如「PE 薄膜|請至店內回收」)   結語 多層軟包裝的永續改善關鍵在於設計要符合實際回收環境,而非理想狀態。 推動單一材質結構、選擇可相容或可拆解的阻隔與黏著系統、以實測數據驗證,再為無法機械回收的部分建立可信的替代路線,才能讓軟包裝在保有性能的同時,也能真正回到可循環體系。   內容來源: https://www.packaging-gateway.com/